In a big discovery, scientists find a way to ‘hear’ universe

RSTV Bureau

In an announcement that electrified the world of astrophysics, scientists claimed on Thursday that they have finally detected gravitational waves, the ripples in the fabric of space-time that Einstein had predicted. Scientists likened the breakthrough to the moment Galileo took up a telescope to look at the planets.

The discovery of these waves, created by violent collisions in the universe, excites astronomers because it opens the door to a new way of observing the cosmos. For them, it’s like turning a silent movie into a talkie because these waves are the soundtrack of the cosmos.

“Until this moment we had our eyes on the sky and we couldn’t hear the music,” said Columbia University astrophysicist Szabolcs Marka, a member of the discovery team, adding that the “skies will never be the same.”

An all-star international team of astrophysicists used a newly upgraded and excruciatingly sensitive USD 1.1 billion instrument known as the Laser Interferometer Gravitational-Wave Observatory, or LIGO, to detect a gravitational wave from the distant crash of two black holes, one of the ways these ripples are created.

Some physicists said this is as big a deal as the 2012 discovery of the subatomic Higgs boson, sometimes called the “God particle.” Some said this is bigger.

Gravitational waves, first theorized by Albert Einstein in 1916 as part of his theory of general relativity, are extraordinarily faint ripples in space-time, the hard-to-fathom fourth dimension that combines time with the familiar up, down, left and right. When massive but compact objects like black holes or neutron stars collide, their gravity sends ripples across the universe.

The scientists found indirect proof of the existence of the gravitational waves in the 1970s and the work was honored as part of the 1993 Nobel Prize in physics.

But today’s announcement was a direct detection of a gravitational wave. And that’s considered a big difference. “It’s one thing to know soundwaves exist, but it’s another to actually hear Beethoven’s Fifth Symphony,” said Marc Kamionkowsi, a physicist at Johns Hopkins University who wasn’t part of the discovery team.

“In this case we’re actually getting to hear black holes merging. Gravitational waves are the “soundtrack of the universe,” said team member Chad Hanna of Pennsylvania State University.

Detecting gravitational waves is so difficult that when Einstein first theorized about them, he figured scientists would never be able to hear them. Einstein later doubted himself and even questioned in the 1930s whether they really do exist, but by the 1960s scientists had concluded they probably do, Ashtekar said.

In 1979, the National Science Foundation decided to give money to the California Institute of Technology and the Massachusetts Institute of Technology (MIT) to come up with a way to detect the waves. 20 years later, they started building two LIGO detectors in Hanford, Washington, and Livingston, Louisiana, and they were turned on in 2001. But after years with no luck, scientists realized they had to build a more advanced detection system, which was turned on last September.

Reacting to the new discovery, Prime Minister Narendra Modi expressed joy over historic detection of gravitational waves and lauded the role of Indian scientists in the project.

“Immensely proud that Indian scientists played an important role in this challenging quest,” he shared on Twitter, adding, “Historic detection of gravitational waves opens up new frontier for understanding of universe”.

(With inputs from the PTI)